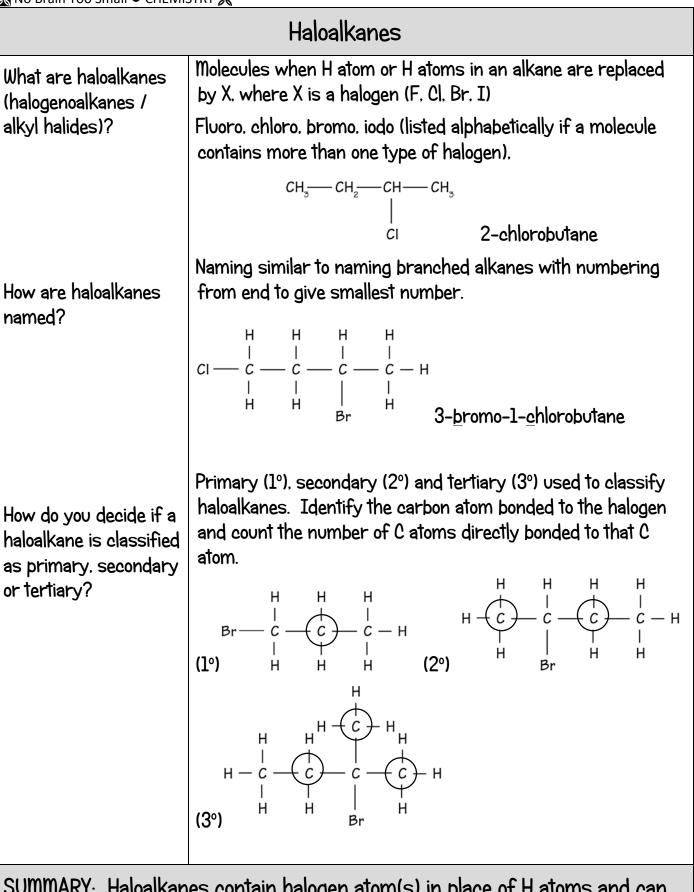
X No Brain Too Small ● CHEMISTRY X		
Introduction to Organic Chemistry		
What are hydrocarbons?	Contain hydrogen and carbon atoms only	
What are the functional groups to know at level 2?	Influence reactivity - give similar chemical and physical properties	
What are the prefixes for C 1- 8?	# of C atoms in the molecule. 1 meth- 2 eth- 3 prop- 4 but- 5 pent- 6 hex - 7 hept- 8 oct- C_nH_{2n+2}	
What is the general formula for alkanes and what are they saturated hydrocarbons?	Each C atom bonded to 4 other atoms: no spare bonds within molecule for further atoms to be added, contain only C-C single bonds: this is called a saturated molecule $\begin{array}{cccccccccccccccccccccccccccccccccccc$	

SUMMARY: Organic chemistry is study of compounds containing carbon. Homologous series have fixed functional groups which give the compound its characteristic properties. Alkanes are saturated hydrocarbons having single bonds between carbon atoms.

🖹 No Brain Too Small 🖲 CHEMISTRY 💥

No Brain Too Small • CHEMISTRY X Types of Formula	
What does the molecular formula tell you?	Identifies the number and type of atoms e.g. C_5H_{12}
What does the structural formula show you?	Shows how the atoms are arranged and bonded to each other $H = -\frac{H}{c} = -$
How do we write a	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
structural formula as a condensed structural formula?	$\begin{array}{c} c_{H_{2}} & c_{H_{2}} & c_{H_{2}} & c_{H_{2}} & or & CH_{3}CH_{2}CH_{2}CH_{2}CH_{3} & or \\ even & CH_{3}(CH_{2})_{3}CH_{3} & \\ c_{H_{3}} & c_{H_{2}} & c_{H_{3}} & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & $
SUMMARY: We can write the formulae of organic molecules in a number of	


different ways; molecular, structural and condensed structural formula.

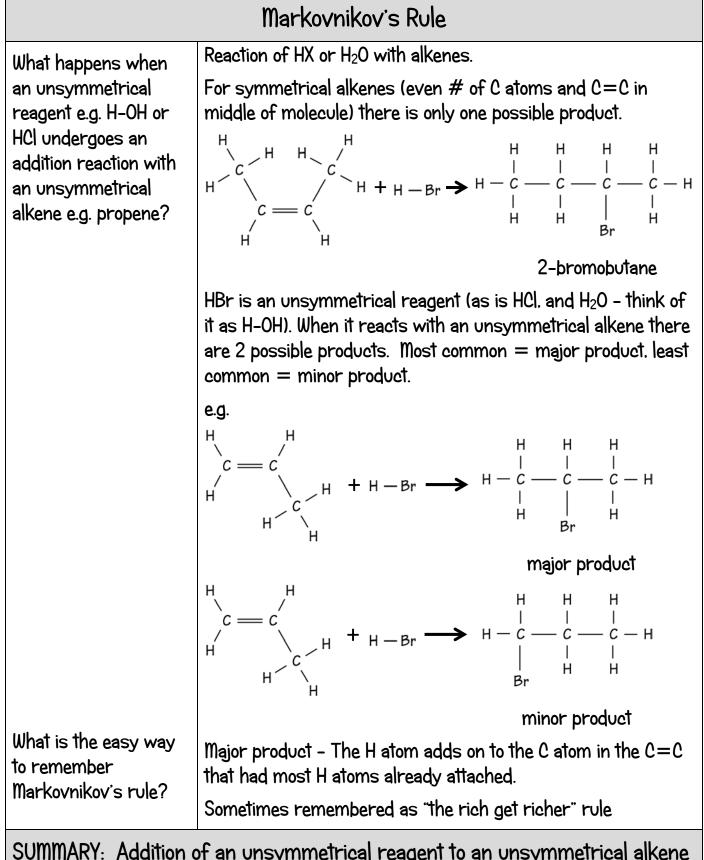
Alkanes & Isomers	
How do I draw isomers of C4H10?	$\begin{array}{l} C_{n}H_{2n+2} \text{ where n is the } \# \text{ of carbon atoms} \\ \text{Can be straight chain or branched chain} \\ & \qquad \qquad$
How are alkanes named using numbers and side chains?	Find longest carbon chain. Find side chain and name it based on # of C atoms. using yl Count from end that gives lowest number for the side chain $\begin{array}{c} H & H & H & H & H & H \\ H & -\frac{1}{c} & -\frac{1}{c} & -\frac{1}{c} & -\frac{1}{c} & -\frac{1}{c} & -\frac{1}{c} \\ H & H & H & H & H \\ H & -\frac{1}{c} & -\frac{1}{c} & -\frac{1}{c} & -\frac{1}{c} \\ H & H & H & H \\ H & H & H & H \\ H & -\frac{1}{c} & -\frac{1}{c} \\ H & -1$

SUMMARY: Alkanes with general formula C_nH_{2n+2} can be straight or branched. They are named based on the longest carbon chain, with numbers used to show the position of the side chains, numbering from the end so as to give the side chain position the lowest possible number. Structural isomers have the same molecular formula but have different physical structures. They are also known as conformational isomers.

Alkane physical properties & chemical reactions	
How and why do m.pt. and b.pt. increase as alkanes increase in size?	Melting and boiling points increase in a regular way as the length of the carbon chain increases.
	@ room temperature C1 - 4 are gases, C5 upwards are liquids: larger alkanes are solids e.g. candle wax
	Forces of attraction between molecules increases as carbon chain length increases. which means that more energy is needed overcome these forces to change the substances state.
What happens to alkanes in water and why?	Alkanes (non polar) are insoluble in water — a polar solvent. Form 2 layers — are immiscible in water.
How are alkanes used	Are used extensively as fuels
as fuels and what affects how well they burn?	Plentiful oxygen - complete combustion to produce CO_2 . H_2O and max. amount of energy.
	Limited oxygen - incomplete combustion to produce C and CO and H_2O and less energy.
	C (soot) is dirty. CO is colourless. odourless. very toxic.
	CO_2 linked to global warming / climate change.
How do alkanes react with bromine water – and what special conditions are needed?	React slowly with Br2 water in presence of UV light and/or heat. Orange bromine colour is slowly decolourised.
	Is a substitution reaction. Two products are made.
	$C_6H_{14} + Br_2 \rightarrow C_6H_{13}Br + HBr$
	(The reaction would continue with further substitution but for this exam you only need to write an equation for monosubstitution).

SUMMARY: Alkanes are non-polar molecules that are insoluble in water. Their m.pt and b.pt increase as the number of carbon atoms in the molecule increase. Their two most important chemical reactions are combustion reactions (complete and incomplete) and substitution reaction with orange bromine.

SUMMARY: Haloalkanes contain halogen atom(s) in place of H atoms and can be classified as primary, secondary or tertiary depending on how many carbon atoms are directly bonded to the carbon atom that has the halogen bonded to it.


No Brain Too Small ● CHEMISTRY X Alkenes	
What are the first 3 alkenes and what is the alkene functional group?	C_nH_{2n} ethene. propene. butene etc. Hydrocarbon molecules with one (or more) double covalent bonds between carbon atoms (C=C) C=C functional group makes them more reactive than alkanes. The C=C means more atoms can be added to the molecule which is described as unsaturated: not every C atom is bonded to 4 other atoms.
How can alkenes have structural and geometrical isomers?	H H H H H H H H H H H H H H
What two things are needed for geometrical isomerism?	The C=C bond prevents rotation and so atoms / groups of atoms attached to either side of C=C are fixed in position. Alkenes with same molecular formula can be cis or trans. This is geometric isomerism. $\begin{array}{c} & & \\ &$
	H $c = c$ H $c = c$

SUMMARY: Alkenes are unsaturated hydrocarbons containing a C=C double bond. The bond does not allow rotation and can give rise to cis and trans isomers as long as each carbon joined by the double bond has 2 different atoms/groups attached to it.

Addition reactions of alkenes	
Define 'addition' reaction	C=C makes alkenes reactive. One of the bonds in the double bond breaks and atoms / groups of atoms can join to make a new molecule.
	Addition reaction with bromine water. Orange bromine water is rapidly decolourised; Useful test for $C=C$ / unsaturation
	Halogenation – e.g. addition of Br_2 or Cl_2
How do alkenes react with bromine water. hydrogen. HX. water. and themselves?	$ \begin{array}{c} H \\ \downarrow \\ \downarrow \\ H \end{array} C = C \\ H \end{array} \xrightarrow{H} B_{r} \xrightarrow{B_{r}} B_{r} \xrightarrow{H} H \xrightarrow{H} \xrightarrow{H}$
	Other addition reactions
	Hydrogenation
	$\begin{array}{c} H \\ C = C \\ H \\$
	Addition of HX - e.g. HCl or HBr
	$ \begin{array}{c} H \\ \uparrow \\ c = c \\ H \\ H \\ H \end{array} \begin{array}{c} H \\ H \\ H \\ H \end{array} \begin{array}{c} H \\ H $
	<u>Hydration</u> – addition of water. H^+ , H_2O , heat – to form an alcohol
	Polymerisation (ethene \rightarrow polyethene)

SUMMARY: Alkenes undergo addition reactions where one bond of the C=C double bond opens up and atoms join to the carbon atoms. The one product molecule is now unsaturated.

Shaking a small amount of bromine water with an alkane and an alkene lets you easily distinguish between them as the bromine water decolourises instantly with the alkene (and only very slowly with the alkane in uv light).

SUMMARY: Addition of an unsymmetrical reagent to an unsymmetrical alkene produces 2 products, a major and a minor, which can be predicted by applying Markovnikov's rule

Addition Polymerisation	
Define addition polymerisation.	Linking together of many alkene molecules; Can react with each other because of $C=C$ bonds.
	Monomer is the single molecule building block:
Explain how the structure of the monomer allows the	Polymer is a macromolecule (very large molecule) made from many linked monomers. n =large number.
polymer to form.	Polymerisation reaction needs heat + catalyst.
	$ \begin{array}{c} H \\ \uparrow \\ c = c \\ \downarrow \\ n \end{array} \xrightarrow{H} H \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ c \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ c \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ c \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ \downarrow \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ H \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ H \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ H \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ H \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ H \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ H \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ H \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ H \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ H \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ H \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ H \\ H \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ H \\ H \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ H \\ H \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ H \\ H \\ H \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ H \\ H \\ H \\ H \end{array} \right\} \xrightarrow{H} \left\{ \begin{array}{c} H \\ H $
	ethene monomers section of polyethene
	Polythene is long molecule - solid at room temperature.
	Unreactive polymer as now saturated C-C. Resistant to attack by chemicals.
Name 2-3 different polymers and give a use for each.	Propene $ ightarrow$ polypropene: rope, carpet, crates, clothing
	Vinylchloride $ ightarrow$ PVC; raincoats, pipes, wire insulation
	Tetrafluoroethene $ ightarrow$ PTFE: non stick pans. waterproofing
SUMMARY: Addition	oolymers are made from alkene monomers which can

SUMMARY: Addition polymers are made from alkene monomers which can join together in a polymerisation reaction to make large solid molecules. the polymer molecules. Different polymers with different properties are made from different monomers. Their different properties give them different uses but they are now all unreactive as they are saturated.

Alcohols	
What is the alcohol general formula?	Alkane chain with -OH group replacing a H atom. $C_nH_{2n+1}OH$ Names based on # of C atoms. methanol. ethanol. propanol etc.
Show how to draw poropan-1-ol and propan-2- ol	For alcohols with more than 3 C atoms it is necessary to show the C atom that the -OH group is attached to. $CH_3 - CH - CH_3$
How are alcohols classified as 1º, 2º or 3º?	$\begin{array}{c} c_{H_3} & c_{H_2} & c_{H_2} & o_{H_2} \\ propan-1-ol \ / \ 1-propanol \\ CH_3CH_2CH_2OH \end{array} \begin{array}{c} ropan-2-ol \ / \ 2-propanol \\ CH_3CH(OH)CH_3 \end{array}$
	Classified as 1°, 2°, or 3°. Identify the carbon atom bonded to the -OH and count the number of C atoms directly bonded to that C atom. e.g. $CH_3CH(OH)CH_3$ is a secondary alcohol
How do m.pt and b.pt of alcohols change as they increase in size and why?	As # of carbon atoms increases, the m.pt. and b.pt of alcohols increase. As the molecules get bigger the intermolecular attractions between the molecules get stronger so more heat energy is needed to separate the molecules to bring about a change in state.
How does the solubility of alcohols change as they increase in size and why?	Alcohols have higher m.pt. and b.pt than their corresponding alkanes because of the polar nature of the -OH group.
	As # of carbon atoms increases, the solubility of alcohols decreases. C1-3 are soluble in water. C4 onwards are not because the longer non polar hydrocarbon regions.
SUMMARY: Alcohols have the -OH functional group, with -OH replacing the H of an alkane. Their melting and boiling points increase as the molecules get	

SUITINARY: Alcohols have the -OH functional group, with -OH replacing the H of an alkane. Their melting and boiling points increase as the molecules get bigger due to stronger intermolecular attractions but their solubility in water decreases as the non-polar portion of the molecule increases in length. They can be classified as primary, secondary or tertiary depending on how many carbon atoms are directly bonded to the carbon atom that has the -OH group bonded to it.

Alcohol reactions	
How do alcohols burn?	Alcohols are flammable and make good fuels, burning with complete combustion forming CO_2 and H_2O . Need more O_2 because as $\#$ of C increase so combustion becomes more incomplete.
What brings about substitution of -OH for -Cl?	SOCl ₂ (as well as PCl ₃ or PCl ₅ or hydrogen halides) will convert R-OH to R-Cl. e.g. $CH_3CH_2CH_2OH \xrightarrow{SOCl_2} CH_3CH_2CH_2Cl$
What brings about dehydration of an alcohol to create an alkene C=C and why is this elimination?	Conc. H_2SO_4 and heat will dehydrate an alcohol to an alkene. Remove –OH and an –H from an adjacent (next door) carbon atom. If unsymmetrical may get 2 products (poor get poorer). In this elimination reaction 2 atoms or groups are removed from adjacent C atoms, creating a C=C bond.
	CH, CH, CH, CH, OH will be dehydrated to a mixture of
	CH ₃
	CH=CH CH=CH CH ₃ -CH ₂ -CH CH ₃ CH ₃ CH ₃ and CH ₂ major* Minor
	*major would be include a mixture of cis and tans forms
What brings about the conversion of a primary alcohol to a carboxylic acid?	Heating with $H^+/Cr_2O_7^{2-}$ (colour change orange to green) or H^+/MnO_4^- (colour change purple to colourless) will oxidise a primary alcohol to a carboxylic acid.
SUMMARY: Alcohols burn well, making good fuels particular the smaller molecules. Alcohols can be substituted with SOCl2 (R-OH to R-Cl), dehydrated	

molecules. Alcohols can be substituted with $SOCl_2$ (R-OH to R-Cl), dehydrated with conc. sulfuric acid, creating a C=C functional group, or oxidised (if they are primary alcohols) to carboxylic acids by heating with an oxidising agent.

🐹 No Brain Too Small 🖲 CHEMISTRY 💥

	Haloalkane reactions
Why are reactions of haloalkanes so useful?	Haloalkanes are useful as they can be converted to alcohols. alkenes and amines in three different reactions. Often need to know for "conversion" questions.
What are the two substitution reactions of haloalkanes?	Haloalkane heated with KOH*(aq) will undergo a substitution reaction, forming an alcohol. (*or NaOH (aq)) CH3CH2CH2CI
	Haloalkane heated with conc. $NH_3(alc)$ will undergo a substitution reaction, forming an amine.
	$CH_3CH_2CH_2CI \xrightarrow{Conc NH_3(alc), heat} CH_3CH_2CH_2NH_2$
What is the elimination reaction of	Haloalkane heated with KOH(alc) will undergo an elimination reaction, forming an alkene. (*or NaOH (alc)) – a hydrogen halide is eliminated KOH(alc), heat
haloalkanes?	$CH_3CH_2CH_2CI \longrightarrow CH_3CH = CH_2$
How do you predict major and minor elimination products from a haloalkane?	If the structure of the haloalkane is such that it can undergo elimination in two different ways, then the more highly substituted alkene (having lesser number of hydrogen atoms on the doubly bonded carbon atoms) is the major product of elimination.
	(Poor get poorer. Saytzeff's rule)
	$CH_{3}CH_{2}CHBrCH_{3} \xrightarrow{KOH(alc), heat} CH_{3}CH = CHCH_{3} + CH_{3}CH_{2}CH = CH_{2}$ major minor
SUMMARY:	
	CH ₃ CH ₂ CH ₂ OH CH ₃ CH ₂ CH ₂ NH ₂
	KOH(aq). heat $CH_3CH_2CH_2CI$ Conc NH ₃ (alc), heat
	KOH(alc), heat
	$CH_3CH = CH_2$

HOW TO IDENTIFY SOME ORGANIC COMPOUNDS Solubility in water. Alcohols Cl – C3, amines Cl – C5 & carboxylic acids Cl - C3 are soluble in water. Miscible/mix totally. Why? Attraction (hydrogen bonding) between -OH of alcohols. -NH2 of amines and -COOH of carboxylic acids and water molecules. Same attraction does not occur between the non-polar hydrocarbon regions and water. Alcohols, amines and carboxylic acids with \geq 4 carbon atoms are increasingly insoluble in water. Immiscible (form two layers). All alkanes, alkenes, alkynes, haloalkanes are insoluble. pH / acid-base character To measure pH substance must be soluble in water. \circ indicators Alcohols are (virtually) neutral o carbonates/hydrogen \circ IU paper / solution is unchanged carbonates Red litmus STAYS red. blue litmus STAYS blue ○ reactive metals e.g. Mg Amines are weak bases ○ IU paper / solution TURNS blue 0 Red litmus TURNS blue, blue litmus STAYS blue Carboxylic acids are weak acids \circ IU paper / solution TURNS orange Red litmus STAYS red, blue litmus TURNS red • Produce gas with carbonates / hydrogen

Reaction with Br2 water

Reaction with H^+/MnO_4^- (no heat needed)

Reaction with H^+/MnO_4^- , heat OR H+/Cr2072-, heat

carbonates $[CO_2]$ and reactive metals $[H_2]$ Orange Br₂ water decolourises rapidly with alkenes and alkynes [addition rxn], but only slowly by saturated hydrocarbons & other unsaturated organic compounds. needing uv light and/or heat [substitution rxn]. H^+/MnO_4^- changes from purple to colourless when shaken with alkenes [oxidation reaction]. H⁺/MnO₄⁻ changes from purple to colourless, and

 $H^+/Cr_2O_7^{2-}$ from orange to green when heated with primary (and secondary) alcohols, [oxidation reaction].

SUMMARY: Solubility in water (or lack of), indicators, carbonates and reactive metals. bromine water. MnO_4^- and $Cr_2O_7^{2-}$ can be used to help identify organic "unknowns" Reactions are acid-base, addition, substitution and oxidation.

💥 No Brain Too Small ● CHEMISTRY 💥

Carboxylic acids & their reactions	
How are carboxylic acids named?	IUPAC suffix is "oic acid" e.g. butanoic acid
How are they written/ drawn?	CH ₃ CH ₂ COOH / C ₂ H ₅ COOH (propanoic acid) $CH_{3} - CH_{2} - C$ O $CH_{3} - CH_{2} - C$ O O O H H - C H - C H H - C H H H H H H H H
What types of reactions are needed at level 2?	At level 2 the reactions of carboxylic acids are restricted to those acting as weak acids (proton donors)
How do they react with water?	 RCOOH + H₂O ⇒ RCOO⁻ + H₃O⁺ Reaction with water / ionisation is incomplete RCOO⁻ is carboxylate ion e.g. CH₃COO⁻ is ethanoate ion Turn UI solution / paper orange (pH≈3-5) depending on the acid and its concentration of course Turn blue litmus paper red
How do they react with carbonates / hydrogen carbonates?	RCOOH + NaHCO ₃ → RCOO ⁻ Na ⁺ + H ₂ O + CO ₂ RCOO ⁻ Na ⁺ is the sodium salt of the carboxylic acid. Can also be written Na ⁺ RCOO ⁻ See bubbles of colourless gas / effervescence
How do they react with bases?	RCOOH + NaOH \rightarrow RCOO ⁻ Na ⁺ + H ₂ O No gas produced.
How do they react with (reactive) metals?	2RCOOH + Mg \rightarrow (RCOO ⁻) ₂ Mg ²⁺ + H ₂ See bubbles of colourless gas / effervescence
Other useful clues to their identity	Methanoic, ethanoic and propanoic acid are soluble in water; C4 and upwards are not. Ethanoic acid = acetic acid; has vinegar smell. Butanoic acid smells like rancid (off) butter,
SUMMARY: Carboxylic acids are weak acids. their reaction with water being incomplete so the [H ₃ O ⁺] concentration is not very high / pH not very low. They give characteristic colours with UI & litmus and a visible sign of reaction (gas) with carbonates/hydrogen carbonates & reactive metals. forming salts.	

Amines & their reactions	
How are amines named? How are they written/ drawn?	IUPAC suffix is "amine" e.g. butan-l-amine H - c = c = c = c = c = n H - c = c = c = n + + + + + + + + + + + + + + + + + +
How are they made?	Substitution reaction of haloalkane with ammonia (alc) RX + $NH_3 \rightarrow RNH_2$ + HX
What types of reactions are needed at level 2?	At level 2 the reactions of amines are restricted to those acting as weak bases (proton acceptors). The easiest way to think of amines is as near relatives of ammonia, NH3.
How do they react?	$RNH_2 + H_2O \rightleftharpoons RNH_3^+ + OH^-$
	 Reaction with water / ionisation is incomplete When an amine reacts with HCl or H₂SO₄, an acid-base reactions occur. Amines are bases and as a result amines accept protons from acids. RNH₂ + HCl → RNH₃+Cl⁻
Other useful clues to their identity	 Turn UI solution / paper blue (pH≈9-11) depending on the amine and its concentration of course Turn red litmus paper blue
	Solubility falls off as the hydrocarbon chains get longer – noticeably so after 5 carbons. They form alkaline solutions that affect indicators (as above). The small amines smell very similar to ammonia but as the amines get bigger. they tend to smell more "fishy". or of decay. Or perhaps we should put it the other way around: Decaying fish give off odorous amines.

SUMMARY: Amines are weak bases, their reaction with water being incomplete so the [OH⁻] concentration is not very high / pH not very high. They give characteristic colours with UI & litmus and many have unpleasant fishy or decay-like smells.

Types of chemical reactions

Addition - the double bond breaks and TWO atoms and/or groups being added.

• Addition reactions include hydration, halogenation, hydrohalogenation, hydrogenation and polymerisation.

Substitution - an atom or group of atoms is replaced with another atom or group of atoms.

- Reaction of alkane with a halogen in presence of light and/or heat.
- Reaction of alcohol with PCl₅ is a substitution reaction. The hydroxyl group (-OH) of butan-1-ol is replaced by a chloro group (-Cl). The product is CH₃CH₂CH₂CH₂Cl. The functional group in the product is a chloro group / chloroalkane (haloalkane).
- \circ Reaction of haloalkane with NH₃(alc) to form an amine.
- Reaction of haloalkane with KOH(aq) to form an alcohol.

Elimination reactions - a C to C double bond forms and TWO atoms and/or groups being removed.

- Reaction of an alcohol with concentrated H₂SO₄. A hydrogen atom and the -OH group on (an adjacent) carbon atoms are removed forming a (carbon-to-carbon) double bond. The functional group in the product is a (carbon-to-carbon) double bond / alkene. Although this is a dehydration reaction you should classify it as an elimination reaction.
- Reaction of a haloalkane with KOH(alc). A hydrogen atom and the halogen atom on (an adjacent) carbon atoms are removed forming a (carbon-to-carbon) double bond. The functional group in the product is a (carbon-to-carbon) double bond / alkene.

<u>Acid-base reactions</u> - should be called acid-base (and not 'neutralisation').

- When propanoic acid reacts with sodium carbonate, an acid-base reaction occurs in which sodium propanoate, water and carbon dioxide are formed. It is acid-base because the propanoic acid donates a proton, forming the propanoate ion.
- When propanamine reacts with HCl or H₂SO₄, acid-base reactions occur. Amines are bases and as a result amines accept protons from acids. E.g. $CH_3CH_2CH_2NH_2 + HCl \rightarrow CH_3CH_2CH_2NH_3^+Cl^-$

Oxidation

- Reaction of an butan-1-ol with $H^+/Cr_2O_7^{2-}$ or H^+/MnO_4^- is oxidation as butan-1-ol is oxidised to a carboxylic acid. The functional group in the product is carboxylic acid.
- $_{\circ}$ When H⁺/MnO₄⁻ reacts with an alkene. the alkene is oxidised to a diol.